

Agriculture College – Wasit University

Dijlah Journal of Agricultural Sciences

ISSN 2790 - 5985 eISSN 2790 - 5993

Dijlah J. Agric. Sci., 2(3): 76-87, 2024

دور المغذيات العضوية في نمو وحاصل نبات الحلبة Trigonella foenum-graecum وتراكم بعض المركبات الفعالة

هدى محد عبد السراي و احمد شاكر محسن الدهامي

جامعة واسط ـ كلية الزراعة ـ قسم المحاصيل الحقلية

*Corresponding author e-mail:habed@uowasit.edu.iq ahshaker@uowasit.edu.iq

Abstract:

The experiment was applied in College of Agriculture, University of Wasit. The aim of study was to estimate the effect of organic nutrients on the growth and yield of fenugreek plant. The experiment was conducted within a randomized complete block design (RCBD) with three replicates and the averages were compared according to the L.S.D. test at a probability level of 5%. The experiment included 6 treatments, which are adding organic nutrients Disper Humic to the soil at a level of 3 kg/ha-1 and King Life Fruit spraying on the leaves at a concentration of 2 g/L-1 either alone or in combination with half the recommended chemical fertilizer. The first addition of both nutrients was 20 days after planting, which is the same period between one addition and another. As for the chemical fertilizer, the first addition was 20 days after planting and the second was a month after the first addition. The results were compared with the chemical fertilization treatment and the treatment without fertilization.

The results of the experiment showed that the T2 treatment (100% chemical fertilizer) was superior in most of the characteristics of vegetative growth, yield and its components. This is obvious because chemical fertilizers are rich in mineral elements, quickly dissolve and more readily absorbed, but they are fertilizers that have health and environmental effect. Therefore, the focus of our research aims to find a fertilization program that is friendly to the environment and human health and gives results close to the results of chemical fertilizer. Our research showed that the T6 treatment (adding King Life Fruit + Disper Humic in three batches + 50% chemical fertilizer). The results close chemical fertilization with insignificant differences for most of the studied characteristics, but it was superior in the characteristic of Trigonelline compound accumulation.

Key word: Soaking, Inhibiting growth, Cress seeds, pot conditions.

المستخلص

نفذت التجربة في حقول كلية الزراعة/ جامعة واسط، الهدف منهما دراسة تأثير المغذيات العضوية في نمو وحاصل نبات للحلبة. نفذت التجربة ضمن تصميم القطاعات الكاملة المعشاة (RCBD) بثلاثة مكررات وقورنت المتوسطات حسب أختبار ... Disper Humic على مستوى أحتمال 5%, وتضمنت التجربة 6 معاملات وهي عبارة عن اضافة المغذيات العضوية 50 للتربة بمستوى 3 كغم . هكتار 51 و تضمنت التجربة 51 للتربة بمستوى 3 كغم . هكتار 52 للشتراك مع الاوراق بتركيز 2 غم . لتر 53 المدة نفسها بين اضافة المغذيين بعد 20 يوماً من الشتل وهي المدة نفسها بين اضافة وأخرى, أما السماد الكيميائي فكانت الاضافة الأولى بعد 20 يوماً من الشتل و الثانية كانت بعد شهر من الاضافة الأولى, وقورنت النتائج مع معاملة التسميد الكيميائي ومع المعاملة من دون تسميد .

اظهرت نتائج التجربة ان معاملة T_2 (100% سماد كيميائي) تفوقت في اغلب صفات النمو الخضري والحاصل ومكوناته, وهذا يعد امرا بديهيا لان الاسمدة الكيميائية غنية بالعناصر المعدنية وسريعة الذوبان واكثر جاهزية للامتصاص, لكنها تعد اسمدة لها مضار صحية وبيئية, لذا محور بحثنا يهدف الى ايجاد برنامج تسميدي صديق للبيئة وصحة الانسان يعطي نتائج مقاربة لنتائج السماد الكيميائي. اذ تبين من خلال بحثنا ان معاملة T_6 (إضافة King Life Fruit+ Disper Humic على ثلاث دفعات+50% سماد كيميائي) اعطت نتائج مقاربة الى نتائج مقاربة للتسميد الكيميائي بفروق غير معنوية لأغلب الصفات المدروسة بل تفوقت في صفة تراكم مركب الـ Trigonelline.

الكلمات المفتاحية: المغذيات العضوية - نبات الحلبة - المواد الفعالة.

المقدمة

تعد الحلبة (.. Trigonella foenum graecum L.) إحدى النباتات الغذائية والطبية ذات الاستخدام الواسع في الطب الشعبي ، وعلى الرغم من الدراسات التي أجريت عليها إلا أنها لم تنل حظها الوافي في المجال البحثي. لنبات الحلبة مكانة متميزة من ناحية كونها مضادة للأكسدة ، والتي تُعزَى إلى وجود المركبات الفلافينويدية فيه ، فقد أشار Budhaditya واخرون (2015) إلى احتواء المستخلص المائي لبذور نبات الحلبة على فعالية عالية مضادة للأكسدة ، حيث لوحظ بأن هذه الفعالية تتناسب طردياً مع محتوى بعض المركبات في المستخلص. وكذلك بين Bhatia واخرون (2020) أن لمستخلص بذور الحلبة تأثير وقائي في تحلل البروتينات وأكسدة الدهون وتكسير كريات الدم الحمراء من جراء الإجهاد التأكسدي. تستخدم بذور الحلبة طبيا في أغراض عديده منها ما هو مدر للبول واللبن وعسر الهضم والمغص والامساك. كما تؤكل الإوراق الخضراء و كذلك البذور المنبتة, تطحن الحلبة وتضاف الى دقيق الذرة في صناعة الخبز بنسبة 5 % حيث يؤدى ذلك الى إرتفاع نسبة البروتين في الخبز. وتصل نسبة البروتين في البذور الى 6.20 %ونسبة الزبت الى 73.7 %ونسبة القلوبدات التربجولينين الى 11.8%

نظرا لتفاقم ظاهرة التلوث للمنتجات الغذائية والتربة والمياه ببقايا الأسمدة الكيميائية والمبيدات أدى ذلك إلى ظهور الحاجة لاستخدام أسلوب نظام الزراعة الذي يعتمد على استخدام المواد الطبيعية في الزراعة بدلا من الأسمدة الكيميائية (2007, Magdoff). كما وأن استخدام الأسمدة العضوية جزئيا أو كليا مع الأسمدة الكيميائية أعطى نتائج مشجعة مقارنة مع الزراعة العضوية أو الكيميائية كلا على حدة من ناحية كمية الإنتاج ونوعية الثمار (Bokhtiar وآخرون ,2008). ولأهمية المنتج الزراعي الخالي من الملوثات الكيميائية والطلب المتزايد عليه من قبل المستهلكين لغذاء ذي جودة عالية وأكثر أمنا(Syaner و Snyder) لذا فإن الهدف من هذه الدراسة هو معرفة تأثير بعض المغذيات العضوية في مؤشرات النمو الخضري والثمري وتراكم مادة الـ (Trigonelline.). الترشيد في استخدام الأسمدة الكيميائية. تأثير المغذيات العضوية في نمو

وحاصل النباتات. أهتم الباحثون بدراسة تأثير الاسمدة العضوية ومشتقاتها في مؤشرات النمو الخضري وحاصل النباتات. أهتم الباحثون بدراسة تأثير الاسمدة العضوية ومشتقاتها في مؤشرات النمو آو E و E

وذكر العامري (2011) أن معاملة سماد الدواجن مع رَش حامض الهيوميك أعطت أعلى نسبة للزيادة في الحاصل حيث بلغت 70.56% و 36.13% للموسمين على النتابع. كماحصل Abd El-Rheem واخرون (2012) على زيادة معنوية في كمية الحاصل وطول الثمرة لنبات الفلفل عند التداخل بين اضافة حامض الهيومك 3 مل. لتر 1 و 500 كغم. 1 من 2 ووجد الباحثون Azarpour واخرون (2012) في دراستهم على نبات الباذنجان أن اضافة حامض الهيومك بتركيز 50 ملغم.لتر 1 + 80 كغم 1 نتروجين صافي , قد اثرت معنويا على كمية الانتاج وعدد الثمار وطول الثمرة. توصل Deore وآخرون (2015) عند دراستهم تأثير استخدام السماد العضوي السائل بتراكيز مختلفة (5,4,3,2,1) % في نمو وحاصل نبات الحلبة, ان معاملة النبات بالسماد رَشاً بتركيز (3)% قد أعطت أعلى زيادة في نمو وحاصل النبات, وقد تفوقت معنويا على معاملة القياس (1)%. اكدا Kholdi و الموبياء خاصة عند معاملات التداخل مع سماد النتروكسين, كما على اغلب صفات النمو والحاصل على نبات اللوبياء خاصة عند معاملات التذاخل مع سماد النتروكسين, كما وجد baed وأخرون (2018) عند دراستهم تأثي رحامض الهيومك على نبات الباقلاء, ان لتراكيز حامض الهيومك معنويا في اغلب الصفات المدروسة حيث اعطى التركيز 3 سم 2 . قل معدل لصفة الحاصل بلغ 27.6 طن في كلا الموسمين بينما اعطى التركيز 0 سم 3 . المغذيات العضوية تأثير فعال على جميع صفات النمو والحاصل والمكونات الفعالة في نبات الحلبة.

المواد وطرائق العمل

نفذت التجربة في حقول قسم البستنة وهندسة الحدائق التابعة لكلية الزراعة – جامعة واسط للموسم الشتوي 2022-2023. بعد اجراء كافة العمليات الزراعية للتربة من حراثة وتنعيم وتسوية قُسِمت إلى الواح بطول 1.5 x 2 متر. جُلِبت بذور محلية وزرعت بتاريخ 15-11-2022 بشكل خطوط بمسافة 30 سم بين خط واخر 25 سم بين نبات واخر ضمن الخط الواحد.

استعمل نوعان من المغذيات العضوية هما King Life المنتج من قبل شركة (green) الايطالية و Disper Humic المنتج من قبل شركة (Eden) الاسبانية. ان مواصفات كلا المغذيين المستعملين في الدراسة من النوع الصلب (حُبَيبي) موضحة في (جدول 3). قُسم الحقل الى ثلاثة قطاعات في كل قطاع 6 وحدات تجريبية بمساحة ($2a \times 1.5 \times 1.5$ م = $a \times 1.5 \times 1.5$ م وحدة تجريبية على 7 خطوط في كل خط0 نباتات. فصلت كل وحدة تجريبية عن الاخرى بفاصل ترابي بعرض 40 سم لمنع تسرب السماد بين المعاملات. وزعت المعاملات عشوائياً وفق تصميم القطاعات الكاملة المعشاة)

Randomized Complete Block Design) RCBD, و قورنت المتوسطات بأستعمال أختبار أقل فرق معنوي LSD عند مستوى أحتمال 0.05 (الساهوكي و وهيب،1990).وكانت المعاملات كالآتي :

معاملة المقارنة من دون استخدام مغذيات عضوية او كيميائية. T_1

 T_2 معاملة الاسمدة الكيميائية وحسب ما موصى به.

 $^{-1}$. ه . ($\mathrm{K}_2\mathrm{O}$ کغم $\mathrm{60}$ + $\mathrm{P}_2\mathrm{O}_5$ کغم $\mathrm{80}$ + N کغم

 $-T_3$ الى التربة على ثلاث دفعات +50 سماد كيميائي.

سماد كيميائــي. (King Life) على ثلاث دفعات +50 % سماد كيميائــي. $-T_4$

الى التربة وعلى ثلاث دفعات. (King Life) الم التربة وعلى ثلاث دفعات. T_5

شافة المغذي (Disper Humic) و اضافة المغذي (King Life) الى التربة على ثلاث $-T_6$ دفعات +50 % سماد كيميائي.

استُعمِلَت التراكيز للمغذيات العضوية كالآتى:

أ - المغذي العضوي (King Life) بتركيز (200) غم . 100 لتر .1-

ب - المغذي العضوي (Disper Humic) بنسبة (16) كغم . هكتار .1-

أما مدة الإضافة فكانت على النحو الآتي:-

الإضافة الأولى // بعصد شهر من انبات البذور .

الإضافة الثانية // بعد الاضافة الأولى بـ 20 يوماً وهكذا حتى الاضافة الثالثة.

أضيف المغذي (King Life Fruit) بطريقة الرش على النباتات عصرا حتى البلل الكامل ، وقد استعملت مادة Tween بتركيز 1 سم3 . لتر 1- مادة ناشرة .

كما أضيف المغذي (Disper Humic)) غم . وحدة تجريبية 1-

جدول 1. مكونات المغذيين (King Life Fruit و (Disper Humic الصلب (الحبيبي).

											مكونات المغذي
Мо	В	Mn EDTA	Zn EDTA	Fe EDTA	MgO	P202	N	K20	Fulvic acid	Humic acid	
											اسم المغذي العضوي
% 0.08											king life fruit
	% 2	% 0.80	% 0.80	% 0.80	% 4	% 9.5	% 6	% 18	-	-	w/w
-	-	-	-	-	-	-	-	% 12.7	% 17	% 68	Disper Humic

صورة رقم (1): المغذي العضوي (1): المغذ

صورة رقم (2): المغذي العضوي (2) عضورة رقم

الصفات قيد المدروسة:

سيتم دراسة الصفات التالية بأخذ عشرة نباتات عشوائية من كل وحدة تجريبية:

- 1. أرتفاع النبات)سم (: ستم اخذ ارتفاع النبات من موضع اتصال النبات بسطح التربة الى اعلى قمة.
 - 2. عدد الفروع.نبات 1- : حساب عدد الأفرع وقسمتها على عدد النباتات العشرة العشوائية.
 - 3. عدد القرنات .نبات : حساب عدد القرنات وقسمتها على عدد النباتات العشرة العشوائية.
 - 4. عدد البذور قرنة:1-سيتم حساب عدد البذور وقسمتها على عدد القرنات للنباتات العشرة العشوائية.
 - 5. الحاصل الكلي: سيتم حسابه من خلال حساب الحاصل في الوحدة التجريبية وتحويله للهكتار.

- 6. النسبة المئوية للبروتين: % حيث قدرت باستعمال جهاز كلدال بعد معرفة تركيز النتروجين في البذور تم حساب نسبة البروتين من خلال ضرب تركيز النتروجين بعامل ثابت هو 6.25 وفقا لطريقة دلالي والحكيم x Protein Percentage = % N . 6.25 (1987)
- 7. محتوى البذور من المادة الفعالة Trigonelline)مايكروغرام.مل¹⁻) سيتم اخذ 100 غم من البذور من كل وحدة تجريبية وستجري عليها عمليات الطحن والنخل إذ ستؤخذ 80 غم من البذور المطحونة بهدف ازالة الدهون وتجهيزها لغرض اجراء عملية الاستخلاص للمركبات القلويدية .بعد أزالة الدهون من البذور وفقا لطريقة (Wagner) واخرون,1984 (ثم تفصل وتنقى المركبات بأخذ 40 غم من بقايا البذور المنزوعة الدهن وسيتم أستخلاص القلويدات وتنقيتها وفق طريقة (Tugrul) و 1985, Ozer و الحكيمي, 2002).

النتائج والمناقشة

أرتفاع النبات (سم):

أظهرت نتائج جدول 2 تفوق معاملة التسميد الكيميائي T_2 في إعطائها أعلى ارتفاع للنبات بلغ 40.20 سم, تلتها ومن دون فرق معنوي المعامة T_6 التي اعطت T_6 سم , في حين كان أقل ارتفاع للنبات في معاملة T_1 (من دون تسميد) إذ بلغ ارتفاع النبات عندها T_6 سم. ومن الجدول نفسه يتبين ان كلا المعاملتين T_6 اعطتا اعلى زيادة في عدد فروع النبات قياسا بباقي المعاملات بفروق غير معنوية.

تشير النتائج المبينة في جدول 1 إلى تفوق المعاملة T_2 النبات الواحد المعاملة في جدول 1 إلى تفوق المعاملة و T_5 النبات الواحد بلغ 20.22 قرنة . نبات T_5 تلتها المعاملتين ومن دون فرق معنوي T_5 و (T_5 بعدد قرنات بلغ 20.50 قرنة . نبات T_5 بالتتابع, في حين كانت اقل قيمة لهذا المؤشر في معاملة T_5 (من دون تسميد) إذ اعطت 10.50 قرنة . نبات T_5 نبات T_5 نبات T_5 نبات T_5 المؤشر في المؤشر في معاملة T_5 المؤشر في مغرب ف

عدد القرنات. نبات: 1-

أظهرت نتائج جدول 2 تفوق معاملة التسميد الكيميائي T_2 في إعطائها أعلى ارتفاع للنبات بلغ 40.20 سم, تلتها ومن دون فرق معنوي المعامة T_6 التي اعطت 36.70 سم , في حين كان أقل ارتفاع للنبات في معاملة T_1 (من دون تسميد) إذ بلغ ارتفاع النبات عندها 30.41 سم. ومن الجدول نفسه يتبين ان كلا المعاملتين (T_6 و T_6) اعطتا اعلى زيادة في عدد فروع النبات قياسا بباقي المعاملات بفروق غير معنوية.

تشير النتائج المبينة في جدول 2 إلى تفوق المعاملة T_2 المعاملة يالنبات الواحد T_5 و النبات الواحد بلغ T_5 و قرنة . نبات T_5 تاتها المعاملتين ومن دون فرق معنوي T_5 و (T_5 بعدد قرنات بلغ T_5 و المعاملتين ومن دون فرق معنوي T_5 و المعاملة T_5 المتابع, في حين كانت اقل قيمة لهذا المؤشر في معاملة T_5 (من دون تسميد) إذ اعطت T_5 قرنة . نبات T_5 المؤشر في المعاملة T_5 المؤشر في المؤشر في المعاملة T_5 المؤشر في المؤشر

جدول 2. تأثير إضافة المغذيات العضوية في معدل ارتفاع النبات (سم) و عدد الفروع الرئيسة. نبات 1- وعدد القربات أ-

عدد القرنات	عدد الفروع.نبات1-	ارتفاع النبات (سم)	المعاملات
-1نبات			المعامرت
10.50	4.40	30.41	1 T (من دون تسمید)
20.22	5.52	40.20	T2 (100% سماد كيميائي)
15.70	4.45	33.80	T3) إضافة Disper Humic للتربة على ثلاث دفعات +50% سماد كيميائي)
14.20	5.00	30.45	T4(الرش بالمغذي King Life Fruit على ثلاث دفعات)
18.00	5.10	32.00	King Life Fruit+ Disper (إضافة) T5 Humic على ثلاث دفعات)
18.50	5.12	36.70	King Life Fruit+ Disper إضافة) T6. الجناف على ثلاث دفعات+50% سماد طى ثلاث دفعات).
3.90	N.S	4.212	LSD 0.05%

صفات الحاصل ومكوناته:

أظهرت نتائج جدول 8 تفوق بعدم وجود 1 فروق معنوية بين المعاملات في صفة عدد البذور. قرنة 1000 ومن الجدول نفسه نلاحظ تفوق معاملة التسميد الكيميائي (1 في إعطائها أعلى زيادة في وزن 1000 بذرة بلغت 14.01 غم تلتها معاملة بفارق معنوي المعاملة 1 التي اعطت 11.144 غم 11.14 غم معاملة المقارنة 11 (من دون تسميد).

تشير النتائج المبينة في الجدول ذاته إلى تفوق معاملة التسميد الكيميائي (T_2) في إعطائها أعلى اعلى المير النتائج المبينة في الجدول ذاته إلى تفوق معاملة T_6 (اإضافة 911.2 كغم. هـ1- تلتها بفارق معنوي المعاملة T_6 الني اعطت 650.6 كغم. هـ1-, في حين كانت اقل قيمة لهذا المؤشر في معاملة T_1 (من دون تسميد) إذ اعطت 160.2 كغم. هـ1-

جدول 2. تأثير إضافة المغذيات العضوية في معدل عدد البذور.قرنة $^{1-}$ ووزن 1000 بذرة (غم)الحاصل الكلي (طن. ه $^{-1}$)

الحاصل الكلي	وزن 1000 بذرة	عدد البذور .قرنة ¹ -	المعاملات	
(كغم. ه (¹⁻	(غم)		المعامدت	
160.2	10.00	9.30	1 T (من دون تسمید)	
911.2	14.01	15.10	T2 (100% سماد كيميائي)	
	9.50		Disper Humic للتربة على ثلاث	
456.5		12.13	دفعات +50% سماد كيميائي)	
400.0	10.05	12.11	T4(الرش بالمغذي King Life Fruit على ثلاث دفعات)	
451.4	10.10	13.00	King Life Fruit+ Disper Humic (إضافة) T5 على ثلاث دفعات)	
650.6	11.14	14.55	King Life Fruit+ Disper إضافة) T6. Humic على ثلاث دفعات+50% سماد كيميائي).	
155.2	1.28	N.S	LSD 0.05%	

النسبة المئوية للبروتين % والـ Trigonelline)مايكروغرام.مل: (1-

أظهرت نتائج جدول 4 تفوق بعدم وجود اي فروق معنوية بين المعاملات في النسبة المئوية للبروتين. بينما اظهرت وجود فروق معنوية في تراكم Trigonelline مايكروغرام.مل في بذور الحلبة, اذ تفوقت معاملة T_0 (إضافة King Life Fruit+ Disper Humic على ثلاث دفعات T_0 0 سماد كيميائي) في إعطائها أعلى قيمة للمركب بلغت T_0 1 مايكروغرام.مل مايكروغرام.مل وغرام.مل في المعاملتين (T_0 1 و T_0 1) بفارق غير معنوي اذ اعطتا T_0 2 مايكروغرام.مل بالنتابع.

يتضح مما تقدم ان معاملة T2 (100% سماد كيميائي) تفوقت في اغلب صفات النمو الخضري والحاصل ومكوناته, وهذا يعد امرا بديهيا لان الاسمدة الكيميائية غنية بالعناصر المعدنية وسريعة الذوبان واكثر جاهزية للامتصاص, لكنها تعد اسمدة لها مضار صحية وبيئية, لذا محور بحثنا يهدف الى ايجاد برنامج تسميدي صديق للبيئة وصحة الانسان يعطي نتائج مقاربة لنتائج السماد الكيميائي.

في بحثنا اعطت معاملة T_6 إضافة King Life Fruit+ Disper Humic على ثلاث دفعات+50% سماد كيميائي) الى نتائج مقاربة للتسميد الكيميائي بفروق غير معنوية لاغلب الصفات المدروسة بل تفوقت في صفة تراكم مركب الـ Trigonelline. وذلك يعود إلى ما يحتويه السماد العضوي (King) من عناصر معدنية مثل البوتاسيوم والنايتروجين والفسفور الذ تساعد النبات على بناء مجموع جذري قوي يستطيع تلبية حاجة النبات من هذه المغذيات ، وبوجودها في جسم النبات بالكميات التي يحتاجها يتمكن النبات من القيام بفعالياته الحيوية المختلفة بكفاءة عالية ومن ثم حصول نمو خضري جيد للنبات (Zeiger و Taiz و عالية ومن ثم

2010) مما يؤدي الى زيادة تصنيع المواد الكاربوهيدراتية بعملية التمثيل الكاربوني وانتقالها من أماكن تصنيعها الى أماكن خزنها () وذلك تنعكس ايجابا على عدد القرنات, ووزن البذور والحاصل الكلي جدول (2و 3) . او قد يعزى السبب الى دور الاحماض الدبالية

جدول 4. تأثير إضافة المغذيات العضوية في محتوى البذور من النسبة المئوية للبروتين% والـ Trigonelline

Trigonelline)مایکروغرام.مل (¹⁻	النسبة المئوية للبروتين%	المعاملات
42.13	19.80	1T (من دون تسمید)
70.20	20.12	T2(100% سماد كيميائي)
50.50	20.20	T3 (إضافة Disper Humic للتربة على ثلاث دفعات +50% سماد كيميائي)
50.98	19.10	T4(الرش بالمغذي King Life Fruit على ثلاث دفعات
63.12	23.21	T5(إضافة King Life Fruit+ Disper Humic على ثلاث دفعات)
70.51	23.40	T6. (إضافة King Life Fruit+ Disper Humic على ثلاث دفعات+50% سماد كيميائي).
8.52	N.S	LSD 0.05%

أو يعزى الى أن إضافة 50% من السماد الكيميائي زادت من جاهزية السماد في التربة وبوجود حامض الهيوميك والفولفيك فيها نتيجة إضافة المغذي Disper Humic (جدول 1) اللذان يسهمان في كفاءة استخدام الأسمدة المضافة (Suganya) و Suganya فضلا عن تكوين مجموع جذري جيد وكفوء قادر على امتصاص العناصر المغذية ونقلها إلى الاجزاء العليا مما أنعكس ايجابياً على نمو النبات والحاصل (Havlin وآخرون،2010).

الاستنتاجات

نستنتج من الدراسة الحالية ان اذ تبين من خلال بحثنا ان معاملة T6 (إضافة ruit+ Disper الكيميائي) اعطت نتائج مقاربة الى نتائج مقاربة للتسميد الكيميائي Humic بفروق غير معنوية لأغلب الصفات المدروسة بل تفوقت في صفة تراكم مركب الـ Trigonelline.

المصادر

- الحكيمي ، اديب عبده ناشر . 2002 . استخلاص الترايكونيللين من بذور الحلبة العراقية ودراسة فعاليته على مستوى السكر والدهون في الارانب السليمة والمصابة بداء السكري المستحدث بمادة الالوكسان . رسالة ماجستبر كلية الصيدلة .جامعة بغداد.
- الساهوكي، مدحت وكريمة محمد وهيب. 1990. تطبيقات في تصميم وتحليل التجارب. وزارة التعليم العالي والبحث العلمي . جامعة بغداد. دار الحكمة للطباعة والنشر.
- العامري، نبيل جواد كاظم. 2011. استجابة الطماطة المزروعة تحت ظروف البيوت المحمية للأسمدة العضوية والإحيائية. اطروحة دكتوراة. قسم البستنة. كلية الزراعة. جامعة بغداد. جمهورية العراق.
- Abead. H. M., H. J. Hammadi and M. A. Salama. 2018. Effect of humic acid foliar in the growth, yield and quality of several genotypes four of vicia faba. Anbar J. of Agr. Sci., Vol.: 16 No. (5): 52-61.
- Abd El-Rheem, K.M., A. A. Afifi and R. A. Youssef. 2012. Effect of Humic Acid Isolated by IHSS-N2/Mn Method and P Fertilization on Yield of Pepper Plants. Life Science Journal,9(2): 356-362.
- Azarpour1, E., M. K. Motamed., M. Moraditochaee, and H. R. Bozorgi. 2012. Effects of bio, mineral nitrogen fertilizer management, under humic acid foliar spraying on fruit yield and several traits of eggplant (Solanum melongena L.). African Journal of Agricultural Research. Vol. 7(7: 1104-1109.
 - Bhatia, K., Kaur, M., Atif, F., Ali, M., Rehman, H., Rahman, S., Raisuddin, S; 2020, "Aqueous extract of T. foenum-graecum L. ameliorates additive urotoxicity of buthionine sulfoximine and cyclophosphamide in mice". Food and Chemical Toxicology., 44 (2006), pp.1744–1750.
 - Bokhtiar, S. M., G. C. Paul, and K. M Alam. 2008. Effects of organic and inorganic fertilizer on growth, yield, and juice quality and residual effects on raton crops of sugarcane. Journal of Plant Nutrition ,1532-4087, 31 (10):1832 1843.
 - Budhaditya. G , I. Chandra, S. Chatterjee . 2015. Fenugreek (Trigonella foenum gracum L.) and its necessity (A Review Paper) Fire Journal of Engineering and Technology.,1(1),2015, 60-67.
- Deore, G. B., A. S. Limaye, B. M. Shinde, and S. L. Laware. 2015. Effect of novel organic liquid fertilizer on growth and yield of Fenugreek (Trigonella foenum graecum L). Asian J. exp. Boil. Sci. spl. pp. 15-19. (India).
- Havlin, J. L., J. D. Beaton, S. L. Tisdale, and W. L. Nelson, 2010. Soil fertility and fertilizers :7th ed. An introduction to nutrient management .Upper Saddle River –New Jersey –U.S.A.

- Kholdi, A., Sedaghathoor, S., & Poursafarali, E. (2015). Effect of nitroxin and humic acid on yield and yield components of faba bean. Journal of Agricultural Sciences, 60(3), 361-367.
 - Magdoff, F. 2007. Ecological agriculture: principles, practices, and constraints. Renewable Agriculture and Food Systems: 22(2): 109–117.
- Majid. H A, H A Salim and A H Fahmi. 2019. Effect of planting date and spraying of humic acid in the growth traits and active compounds of Fenugreek (Trigonella foenum graecum L). IOP Conference Series: Earth and Environmental Science 377(1):1-9.
- Suganya, S. and R. Sivasamy. 2006. Moisture retention and cation exchange capacity of sandy soil as influenced by soil additives. J. Appl. Sci. Res. 2: 949-951
- Snyder, C. and D. Spaner. 2010. The sustainability of organic grain production on the canadian prairies. J. Sustainable Agtic. 2: 1016 1034.
- Taiz, L. and E. Zeiger. 2010. Plant Physiology. 4th. ed. Sinauer Associates, Inc. publisher Sunderland, Massachus- AHS. U.S.A.pp764.
 - Tugrul, L. and Ozer A. 1985. Possibilities for the use of Trigonella foenum-graecum L. seeds as a crude drug in Turkey. Acta pharmaceutica Turcia. 27: 14-16.
 - Wagner, H., Bladt, S. and Zgainski, E. M. 1984. Plant Drug Analysis: A Thin Layer Chromatograply Atlas. Translated by scott, Th. A. Springer-Verlage, Berlin, Heidelberg. New York, Tokyo, PP: 51-54.